Comultiplicativity of the Ozsváth-szabó Contact Invariant

نویسنده

  • JOHN A. BALDWIN
چکیده

Suppose that S is a surface with boundary and that g and h are diffeomorphisms of S which restrict to the identity on the boundary. Let Yg, Yh, and Yh◦g be the threemanifolds with open book decompositions given by (S, g), (S, h), and (S, h ◦ g), respectively. We show that the Ozsváth-Szabó contact invariant is natural under a comultiplication map μ̃ : d HF (−Yh◦g) → d HF (−Yg)⊗ d HF (−Yh). It follows that if the contact invariants associated to the open books (S, g) and (S, h) are non-zero then the contact invariant associated to the open book (S, h ◦ g) is also non-zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ozsváth-szabó Invariants and Fillability of Contact Structures

Recently, P. Ozsváth and Z. Szabó defined an invariant of contact structures with values in the Heegaard-Floer homology groups. They also proved that the twisted invariant of a weakly symplectically fillable contact structures is non trivial. In this article we prove with an example that their non vanishing result does not hold in general for the untwisted contact invariant. As a consequence of...

متن کامل

Infinitely many universally tight contact manifolds with trivial Ozsváth–Szabó contact invariants

Recently Ozsváth and Szabó introduced a new isotopy invariant c(ξ) for contact 3– manifolds (Y, ξ) belonging to the Heegaard Floer homology group ĤF(−Y). They proved [27] that c(ξ) = 0 if ξ is an overtwisted contact structure, and that c(ξ) 6= 0 if ξ is Stein fillable. Later, they introduced also a refined version of the contact invariant denoted by c(ξ) taking values in the so-called Heegaard ...

متن کامل

On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds

The main goal of the present article is the computation of the Heegaard Floer homology introduced by Ozsváth and Szabó for a family of plumbed rational homology 3–spheres. The main motivation is the study of the Seiberg–Witten type invariants of links of normal surface singularities. AMS Classification numbers Primary: 57M27, 57R57 Secondary: 14E15, 14B15, 14J17, 32S25, 32S45

متن کامل

Product Formulae for Ozsváth-szabó 4-manifold Invariants

We give formulae for the Ozsváth-Szabó invariants of 4-manifolds X obtained by fiber sum of two manifolds M1, M2 along surfaces Σ1, Σ2 having trivial normal bundle and genus g ≥ 1. The formulae follow from a general result on the Ozsváth-Szabó invariants of the result of gluing two 4-manifolds along a common boundary, which is phrased in terms of relative invariants of the pieces. The fiber sum...

متن کامل

Infinitely Many Universally Tight Contact Manifolds with Trivial Ozváth–szabó Contact Invariants

In this article we present infinitely many 3–manifolds admitting infinitely many universally tight contact structures each with trivial Ozsváth–Szabó contact invariants. By known properties of these invariants the contact structures constructed in this article are non weakly symplectically fillable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007